
Unified, real-time object detection
Final Project Report, Group 02, 8 Nov 2016

Akshat Agarwal (13068), Siddharth Tanwar (13699)
CS698N: Recent Advances in Computer Vision, Jul–Nov 2016

Instructor: Gaurav Sharma, CSE, IIT Kanpur, India

1 Introduction

Object Detection and Recognition is one of the most important topics in visual perception. Correctly identifying the
objects in its environment and hence inferring their expected behavior from memory is a skill that even young kids
have, and is much needed by intelligent agents to navigate our world. The human visual system is highly advanced
and can learn to identify an unknown object after only a few (in some cases, even a single) encounters, immediately
learning about the object’s properties for future use. Autonomous cars need to identify other cars, road markers,
pedestrians, cyclists, obstacles, traffic signs, traffic lights, lane markings etc. Domestic robots need to identify
with much greater accuracy the exact location of small objects like cups, toys, socks etc. Search engines need
to learn object detection in order to better perform image retrieval and classification. The manufacturing industry
needs object detection to allow machines to identify the correct tool they need or to identify anomalies in machines.
Currently, object detection is at a stage where recently Dieter Fox proposed the 100/100 tracking challenge, which
aims to identify and track 100% of the objects in a scene with 100% accuracy.

In our project, we have studied a new object detection technique, YOLO [13] and have done a parameter study
on the network in order to identify where it can be improved. We have also trained a YOLO network, pre-trained on
ImageNet[10], to classify objects in the KITTI [6] autonomous driving vision benchmark suite.

2 Related Works

Some seminal works on object detection are reviewed below. Most methods comprise of a long disjoint pipeline
each of which needs to be tuned independently.

1. Deformable Parts Model (DPM)[5]: Extracts static HOG features maps from the image at 2 resolutions,
correlates them with linear filters and trains a latent SVM. mAP of 33.4%.

2. Selective Search [15]: Uses bottom up segmentation to merge similar regions. mAP of 35%.

3. R-CNN [8]: Uses region proposals from object detectors, then extracts features from these region proposals
using a CNN pre-trained on a large dataset like ImageNet [2] and fine tuned for object detection on the Pascal
VOC dataset [4]. mAP of 53.3%. An improvement on this algorithm, Fast R-CNN [7] introduced a RoI
pooling layer, leading to a speed up of 213× over R-CNN, but still taking 0.22 s/image.

4. Faster R-CNN [14]: Proposed a Region Proposal Network (RPN) that uses shared convolutional features for
generating proposals. This algorithm achieved a maximum mAP of 59.9% at 17FPS.

5. Single-Shot Multi Box Detector (SSD) [11]: SSD discretizes the output space of bounding boxes into a set
of default boxes with different aspect ratios and scales, per feature map location. mAP of 72.1% at 58FPS.

6. PVANET [9]: Modifies the feature extraction part to be deeper but have fewer channels. Adopts concatenated
ReLU, Inception modules and HyperNet blocks, getting an mAP of 82.5% at 20FPS.

7. R-FCN [1]: Region-based, fully convolutional network with all computation shared on the entire image, using
position-sensitive score maps. mAP of 83.6% at around 6 FPS.
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3 Base Paper

YOLO (You Only Look Once) [13] is a real time object detection framework, processing images at 45 frames per
second. Fast YOLO, processes 155 FPS on a Titan X GPU. The paper presents a unified architecture that replaces
the slow, complex and hard to optimize pipelines in the earlier methods. A single CNN predicts all bounding boxes
simultaneously along with the class probabilities of each box, trains features in-line optimizing them for detection,
and performs non-maximal suppression directly from full images. Only a single network evaluation is required to
predict which objects are present and where they are located. Since the whole detection pipeline is a single network,
it can be optimized end-to-end directly on detection performance cf. training individual components separately as
done in earlier approaches.

4 Approach

We trained a scaled down version of YOLO, with 8 conv layers followed by 1 FC layer. This network was pre-trained
on ImageNet and finetuned on VOC 2007 training+validation and 2012 training set, and testing done on VOC 2012
validation set because the VOC 2012 testing data annotations are undisclosed. We also evaluated the performance of
YOLO on dense urban scenes in the KITTI [6] object detection benchmarking suite. We conducted parameter studies
by varying the most important parameters in the algorithm (size of grid and number of bounding boxes per grid cell)
in order to analyse how they affected the localization ability of the network. Further, we trained another instance of
our pre-trained (on ImageNet) network on KITTI Object Detection Evaluation 2012 and produced qualitative results
on the same due to a lack of accessibility to the testing benchmark itself.

We used the Darknet [12] open source neural network framework which has been written in C and CUDA by
Joseph Redmon. For evaluation we used the VOC development kit provided by the challenge organizers [4]. We
developed the code in Python for porting KITTI data to a VOC and Darknet compatible format to train our network
on it.

5 Empirical Results

Class S=5, B=2 S=7, B=2 S=9, B=2 S=9, B=4 S=9, B=6 Reported
Aeroplane 58.69 61.7 67.1 60.92 56.53 -

Bicycle 52.28 47.77 56.86 51.64 36.37 -
Bird 26.25 23.17 33.28 26.28 15.41 -
Boat 17.7 15.42 20.18 13.49 7.6 -

Bottle 8.98 5.84 12.56 6.04 0.6 -
Bus 64.97 61.74 67.11 65.09 55.01 -
Car 38.53 34.49 41.94 38.64 30.00 -
Cat 61.57 59.1 70.09 59.6 50.07 -

Chair 16.58 12.01 20.92 16.06 8.44 -
Cow 31.14 27.96 35.63 28.07 7.9 -

Dining Table 28.89 35.81 45.62 35.46 28.58 -
Dog 52.84 48.51 51.94 47.14 35.1 -

Horse 49.97 45.95 56.05 49.8 37.29 -
Motorbike 53.99 56.51 61.25 56.69 38.8 -

Person 47.88 48.84 55.19 50.81 45.77 -
Potted Plant 10.06 8.05 12.58 8.99 1.78 -

Sheep 31.16 27.03 31.89 17.41 12.01 -
Sofa 33.94 50.19 47.86 37.29 11.37 -
Train 59.95 58.44 63.44 61.14 52.35 -

TV Monitor 31.65 33.52 37.54 32.49 16.65 -
Overall 38.86 36.92 44.65 38.1 27.39 52.7
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mAPs for different grid size (S) and bounding boxes
per grid cell (B) for all the classes of VOC dataset1

(a) Aeroplane (b) Bus (c) Person (d) Train

Figure 1: Precision-Recall curves

(a) Sheep from VOC 2012 Validation Set
(b) Mona Lisa with Cat

(c) Cars on the road, from KITTI

Figure 2: Object Detection examples on VOC, Artwork and KITTI datasets

6 Discussion

• The author’s reported mAPs on the scaled down YOLO are slightly better than ours because he had 16k
training images while we had 10k.

• We observe that increasing the grid size to 9x9 has a significantly positive impact on the overall mAP, taking
it from 36.9 to 44.65. This is as expected because the network is now able to detect smaller objects too, which
is especially favorable in cluttered scenarios.

• Surprisingly, we get an improvement with S = 5 as well, for the classes with larger objects like aeroplane, train
etc. which usually take up most of the image.

• B = 2 outperforms B = 4 and 6 by a significant margin, which is unexpected. We postulate that this is because
a greater B means that there is a greater chance of the wrong box being detected as positive from that grid cell.

• We see that YOLO generalizes well to artwork as well as images in the wild, with Fig. 2(b) showing an
example.

• YOLO performs admirably well on the dense urban KITTI dataset (Fig. 2(c)), running on videos at 50-70 FPS
on a NVIDIA GeForce GTX 760.

1Paper reported only the overall mAP that too for VOC 2012 test set whereas our results are on VOC 2012 validation set
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7 Comparison Table

S.No. Work proposed Work upto mid-semester New work for final evaluation
1 Reproducing reported results on

PASCAL VOC dataset
Initial set up of a smaller GPU Got comparable results on the

Tiny-YOLO model (Fast YOLO)
on VOC dataset

2 Parameter study on grid size and
number of bounding boxes per grid
cell

Limited training of a scaled down
model (Tiny-YOLO). Partial train-
ing for parameter studies, results
not reported

Experimented for various grid
sizes (5,7,9) and bounding boxes
combinations (2,4,6) and got im-
proved mAP from S=9

3 Fine-tune on datasets such as
KITTI and ETHZ Multi-person
tracking dataset [3]

- Fine-tuned YOLO on KITTI and
obtained good qualitative results

4 Demoing a real-time detection - Presented real time detection on
videos obtained from Youtube, at
58 FPS, using both VOC as well
as KITTI trained networks

5 Decreasing localization error
through literature review

- -
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