
Undergraduate Project 1
Real Time Obstacle Detection for Vehicles using Stereo Cameras

Prawal Gangwar and Akshat Agarwal

Abstract— With the demand of autonomous and driver assist-
ing vehicles, the basic need to detect and estimate the distance
of various obstacles on the road in real time is a big challenge.
In this report we present a real time robust method to find
the solution to this problem. The goal is to find detect obstacles
using stereo images and map it with the real world coordinates.

I. INTRODUCTION

The computation of free space available in the environ-
ment is an essential task for many intelligent automotive
and robotic applications. The free space is the world re-
gion where navigation without collision is guaranteed. In
automotive applications, efficient and robust calculation of
free space becomes critical when in a dense environment,
especially with pedestrians. In robotics, free space in the
robot’s environment is needed to plan the path between
two points. Obstacle detection can be done with the help
of input from various kind of sensors, such as RADAR
and LIDAR sensors, which are very expensive and prohibit
the technology from being scaled up to production level.
Since metallic parts of vehicles reflect RADAR much more
efficiently than human tissue, RADAR, while working well
on sparsely populated roads, can have trouble detecting
pedestrians in dense urban environments. Stereo cameras
provide a cheaper solution than LIDAR, and a lot of research
has been done in the area of obstacle detection and free space
computation using forward facing stereo cameras.

Depth estimation from stereo cameras is done by comput-
ing the disparity between two images. Disparity refers to the
difference in location of an object in corresponding two (left
and right) images as seen by the left and right cameras which
is created due to horizontal separation between the optical
axes of the lenses. The disparity of a pixel is equal to the
shift value that leads to minimum sum-of-squared-differences
for that pixel. Computation of disparity maps has been done
using various methods, such as belief propagation [1] and
semiglobal matching [2]. A comprehensive evaluation of the
available algorithms has been done on the Middlebury dataset
[3], and it indicates that the semiglobal block matching
method proposed by H. Hirschmuller is one of the most
efficient and fast stereo reconstruction algorithm.

In this project we have implemented a system to compute
the free space in front of the vehicle using input from
stereo cameras. First, a disparity map is computed by the
semi global block matching routine available in the OpenCV
library [4]. This is used to compute a columnar occupancy

grid, and further a map of the free space in front of the
vehicle.

The method presented works at 3Hz on a Core-i5-4200
CPU with 1.6GHz clock frequency. Each frame takes about
330ms to process, and a majority of this time (300ms) goes
into the disparity map computation. The method has been
evaluated on the Bahnoff dataset [5] which consists of a
series of images taken from a car moving in a high density
urban environment with pedestrians, park benches, trees and
poles being some major obstacles present in its path. The
images are rectified and undistorted.

II. ALGORITHM DESCRIPTION

This section describes in detail the procedure followed
for arriving at an estimate of the free space in front of
the vehicle. The methods have been tested on the Bahnoff
dataset.

A. Depth Map Computation

As previously mentioned, the depth map has been com-
puted by the Semi-Global Block Matching method imple-
mented in OpenCV. The method was used due to it’s proper
balance of speed and accuracy, which is reflected in its high
rating on the Middlebury dataset rankings.

The algorithm is based on the idea of pixelwise matching
of Mutual Information. The cost aggregation involves search-
ing in multiple directions to enforce a global smoothness
constraint, hence taking into account the disparities of neigh-
bouring pixels while calculating the disparity of a particular
pixel, thereby reducing noise in the form of false positives.

The SGBM routine offers 11 parameters for creating
disparity maps in different environments (dense/sparse), for
enforcing smoothness constraints, noise removal and number
of directions checked while enforcing the constraint. To get
the best results on our dataset, we created a GUI (Fig. 1)
with trackbars for tuning these parameters and checking the
results in real time. This enabled us to get the best possible
results from the algorithm, as shown in Fig. 2.

B. Elimination of Noise Speckles

Even though the algorithm was able to give sufficiently
good disparity data it had some issues with the noise. Some
parts of the disparity image showed some very high intensity
points which had no mapping in the real image. Exact reason
for this is unknown but the observation of it’s non-repetitive
behaviour in the image sequence helped us to solve the
problem.



Fig. 1: The GUI used for parameter tuning

(a) Left Image (b) Right Image (c) Disparity Calculation using SGBM

Fig. 2: Diparity Image Calculation form the two Stereo Images

The assumption that full algorithm is fast and will work
on a adequate frame rate of the images will let us assume
that there has been not much change in the 3 continuous
images. Taking a weighted mean of the past 3 disparity maps
and eliminating the points(from the current disparity image)
whose intensity is greater by a threshold lets us eliminate
the noisy data from the images. The results can be seen in
Fig. 3.

C. Detection and Elimination of Road and Sky

The removal of road from the image data was important
because the non-uniform texture and noise of the road was
also detected as obstacle and it’s removal was necessary to
compute the free space where the vehicle had to move with
least possibility of collision.

The method used to eliminate the road as well the sky
involved use of watershed algorithm [6] to segment the road
and sky in the image as shown in the 5b by using the sum
of output of multiple Erode and Dilate operations on the
original images as markers. The resulting binary image is
then inverted and element-wise multiplied to the disparity
image to clear off all the details from road as well as the
sky.

The Dilate function is basically convolution of an image
with a kernel such that this operation causes bright regions
within an image to ”grow” (therefore the name dilation).
Similarly, the Erode function is just the opposite. Instead
of causing the bright regions to ”grow” it shrinks them
and causes the dark zones to get ”bigger”. The watershed
algorithm performs marker based image segmentation of the
road as described in [6]. The marker, which needs to be
provided manually, was given as the result of Erode+Dilate

images, the results of which can be seen in Fig. 4.

D. Columnar Occupancy Grid

Traffic scenes typically consist of a relatively planar free
space limited by 3D obstacles that have a nearly vertical
pose. The idea is that the ground plane has monotonically
decreasing depth (disparity) along each row, moving upwards
from the bottom of the depth map, and obstacles represent a
discontinuity in the depth profile of the ground plane. This
concept was used to approximate the obstacles by rectangular
blocks of a certain width and height. It offered a significant
reduction in data volume while preserving information of
interest.

A higher disparity corresponds to a closer obstacle, since
the angle of light falling on the camera lenses is greater
for objects closer to the lenses. This along with the vertical
obstacle approximation was used, by finding the maximum
value of disparity in each column, and interpreting it as the
disparity (or depth) corresponding to the obstacle closest in
that column. This led to a columnar occupancy grid being
obtained, which can be seen in Fig. 6.

E. Computation of Free Space

The data obtained from the columnar occupancy grid
was used to build a free space map (Fig. 6), by using the
relationship between disparity in pixels and depth in the real
word:

z =
f × b

d
(1)

where z is the real world depth, f denotes the focal length
divided by an appropriate scale factor, b the baseline distance
and d the disparity. From the camera calibration matrix avail-
able, f = 500.6mm and b = 400mm. To retain information



(a) Disparity with Noisy Speckles (b) Disparity with Noisy Speckles Removed

Fig. 3: Speckle Removal from the Disparity Images

(a) Original Image (b) Result after Erode

(c) Results after Dilate (d) Erode + Dilate

Fig. 4: Application of Erode and Dilate functions in Sky and Road Detection



(a) Original Image (b) Road and Sky marked as White area

(c) Disparity with Road and Sky details (d) Disparity with Road and Sky details removed

Fig. 5: Road and Sky Detection and Removal from Disparity Image

(a) Original Image (b) Occupancy Grid (c) Free Space Plotting

Fig. 6: Free Space and Occupancy Grid Estimation



about obstacles, the depth was saturated at an upper bound
of 10m. Since any information about obstacles further than
that would not be reliable, they were not considered while
mapping the free space.

III. CONCLUSION

The columnar implementation of occupancy grid and free
space reduced computational time while preserving informa-
tion of interest, however the SGBM algorithm took 300ms
to run on a CPU. However the algorithm contains some
computations that are embarrassingly parallel, and as such
a GPU would be able to reduce the running time of the
SGBM algorithm by a great margin. The current algorithm
can be improved to deal with the following problems to get
better details and a more robust detection.

• Untextured background
• Specular surfaces (shiny surface with light reflecting

from it)
• Shadows on the ground and roads
• Perspective distortion
• Repetitive patterns
• Non-Uniform Road Surface

REFERENCES

[1] J. Sun, N.-N. Zheng, and H.-Y. Shum, “Stereo matching using belief
propagation,” Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, vol. 25, no. 7, pp. 787–800, 2003.

[2] H. Hirschmüller, “Stereo processing by semiglobal matching and mutual
information,” Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, vol. 30, no. 2, pp. 328–341, 2008.

[3] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” International journal of
computer vision, vol. 47, no. 1-3, pp. 7–42, 2002.

[4] G. Bradski, Dr. Dobb’s Journal of Software Tools.
[5] A. Ess, B. Leibe, K. Schindler, , and L. van Gool, “A mobile vision

system for robust multi-person tracking,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’08). IEEE Press,
June 2008.

[6] J. B. Roerdink and A. Meijster, “The watershed transform: Definitions,
algorithms and parallelization strategies,” Fundam. Inform., vol. 41, no.
1-2, pp. 187–228, 2000.


